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We propose a linearizable model for the nonlinear photocurrent-voltage characteristics of dye-sensitized
nanocrystalline TiO, photoelectrochemical solar cells. We solve the model and report theoretically predicted
values for fill factors. A single free parameter of the model controls the fill factor. Upon renormalization,
diverse experimental current-voltage data collapse onto a single universal function. The theoretical underpin-
ning provides insight into physical mechanisms responsible for the large fill factors as well as their known
dependence on the open circuit voltage. These advances allow the estimation of the complete current-voltage

curve and fill factor from any three experimental data points, e.g., the open circuit voltage, the short circuit

current, and one other intermediate measurement.
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I. INTRODUCTION

The concepts of scaling, universality, and renormaliza-
tion! led to advances in the study of phase transitions and
critical phenomena’ and more recently to important ad-
vances® in many other fields: random walks and anomalous
diffusion,*!° finance and economics,!! networks,!? move-
ment ecology,'>!* heartbeat dynamics," and even music.'®
Here we address the problem of the current-voltage charac-
teristics of a major class of solar cells using the concepts of
scaling, universality, and renormalization. Continuous-time
random-walk models!” with sublinear scaling'® of the mean-
square displacement with time have successfully found
application'® in describing experimentally measured features
of dye-sensitized solar cells.'®?"

An important feature of photovoltaic solar cells and of
diverse optoelectronic devices studied in semiconductor
physics concerns their current-voltage characteristics.?!>?
Previous theoretical and experimental studies of dye-
sensitized solar cells!® have identified the dependence of the
photocurrent and photovoltage on radiant power,?® but not
the precise nonlinear dependence of the photocurrent on the
photovoltage under conditions of constant radiant power.
Variability in the manufacturing process includes the choice
of dye, the sintering temperature, thickness of the nano-
porous TiO, film, and choice of chemical treatments. This
diversity leads to significant qualitative and quantitative
variation in photocurrent-voltage characteristics and of the
relevant quantities such as the open circuit voltage V. or the
short circuit current density J,.. Variation occurs also in im-
portant quantities known as fill factors (FF), defined as the
largest possible power output per unit area divided by J,. V.
Such variability has discouraged attempts to identify (possi-
bly “hidden”) dynamical patterns that could yield important
insights into the regenerative photoelectrochemical mecha-
nisms that underlie the conversion process. Given the vari-
ability and diversity in the characteristics, which properties
remain universal and which nonuniversal? More importantly
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from an experimental point of view, how can we quantita-
tively model the photocurrent-voltage characteristics, based
on fundamental principles? Here we answer these questions
by deriving an analytical expression for the photocurrent.

This article is organized as follows. In Sec. II we develop
a general linearizable model of dye-sensitized solar cells. In
this section we also discuss the physical significance of a
constitutive equation that we introduce to try to capture the
universal aspects of dye solar cells while also allowing for
wide variation in the specific properties. In Sec. III we report
the results comparing theory and experiment. Finally, in Sec.
IV we discuss our results in quantitative terms and report our
conclusions.

II. LINEARIZABLE MODEL OF DYE SOLAR CELLS

The topic of solar energy in general®* and dye solar cells
in particular'®19-23.2-30ttracts broad interest from diverse
sectors of society due to technological, economic, political,
and environmental considerations. The scientific interest in
dye-sensitized TiO, solar cells stems from their unusual fea-
tures and mode of operation: (i) efficient charge separation
due to ultrafast injection of electron from the dye on pico-
second and subpicosecond time scales;?”** (ii) conduction
consisting only of injected electrons rather than electron-hole
pairs,' due to the wide band gap of the semiconductor TiO,;
(iii) high optical density due to the large surface area of the
dye-sensitized nanoporous semiconductor;?’ (iv) negligible
charge recombination with the oxidized dye;'*?? and (v) high
quantum yields.?’

We approach the nonlinear photocurrent-voltage charac-
teristics of TiO, dye-sensitized solar cells from the point of
view of universality. The idea of universality! most com-
monly brings to mind the fact that critical exponents of phase
transitions do not depend on the details of the microscopic
dynamics for large classes of systems. However, the concept
of universality is much older, e.g., Gaussian or “normal”
statistics was until not too long ago considered universal and
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remains to this day ubiquitous, due to the wide (but not uni-
versal) applicability of the central limit theorem. Whenever
some property is universal (e.g., critical exponents or prob-
ability density functions), suitable rescalings or transforma-
tions can highlight or “bring out” the universality of the
property, such that all the data points for a variety of differ-
ent systems “collapse” onto a single (possibly generalized)
function. Although the technique of data collapse initially
became widespread in the field of critical phenomena,” it has
since found application? in the study of nonlinear dynamical
systems and complex systems, e.g., finance,'' human heart-
beat dynamics,'> and the physics of foraging.!>'* The key
advantage that such techniques confer to the interpretation of
experimental data stems from the possibility of quantitatively
describing diverse systems and phenomena using very few
free parameters.

We will show below, using a proposed model, that the
rescaled current-voltage experimental data collapse onto a
single universal function for a variety of different solar cells
(despite the inherently quantum-mechanical nature of the
photoelectrochemical process underlying the operation of
dye-sensitized cells). The model also allows us to predict
values of the fill factors. Most importantly, the conceptual
advance enables us to estimate the complete current-voltage
curve and fill factor from any three experimental data points.
Typically, these data points will be the open circuit voltage,
the short circuit current, and one other intermediate measure-
ment along the current-voltage curve. We expect our results
to become immediately useful in modeling photocurrent-
voltage characteristics of real dye-sensitized solar cells.

In what follows, we briefly describe the essential features
of dye solar cells. We take as our starting point a textbook
description of electrochemical processes close to equilib-
rium. Although one cannot a priori assume a well-mixed
liquid at nanoscopic scales, the validity of this approach has
previously been generalized and extended to nanocrystalline
dye-sensitized solar cells by Huang et al.>> We then add a
phenomenologically motivated constitutive equation that in-
troduces a finely tuned characteristic voltage (or energy)
scale. This ingredient in the model introduces a degree of
variability into the description of the system. However, it
also captures the essential behavior that (we expect) remains
approximately universal. Finally, we solve and simplify the
resulting set of equations by making empirically acceptable
approximations. This leads to our main results, which fit the
experimental data remarkably well.

A. Charge separation and recombination

We briefly summarize the operation of dye-sensitized so-
lar cells. The devices consist of a nanoporous semiconductor
TiO, film sensitized by adsorbed charge-transfer dyes in con-
tact with a nonaqueous electrolyte. When a crystalline semi-
conductor with a more negative Fermi level makes contact
with an electrolyte with a more positive redox potential,
electrons flow from the semiconductor to the solution in a
manner analogous to what takes place in a p-n junction when
a depletion layer forms. After the initial equilibration, the
depletion layer together with Helmholtz and Gouy-Chapman
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layers in the electrolyte form a space-charge layer at the
interface, bending the edges of the valence and conduction
bands upwards, such that the Fermi level and redox potential
remain the same across the semiconductor-electrolyte inter-
face at all points. This space-charge layer allows charge
separation to proceed as follows: visible light excites an elec-
tron within the dye molecule, causing injection of the elec-
tron into the conduction band of the semiconductor and away
from the electrolyte interface. Subsequently, the dye cation
becomes reduced by a redox couple in the nonaqueous elec-
trolyte, typically, a solution with electroactive donor iodide
(I") and acceptor tri-iodide (I5) ions. A glass electrode with
transparent conducting oxide makes contact with the semi-
conductor while a counterelectrode (typically made of Pt)
returns the electrons to the electrolyte—thus closing the cir-
cuit and allowing a current to flow.

Although a similar equilibration occurs for a nanocrystal-
line semiconductor, the very small size of TiO, nanoparticles
in fact prevents a significant depletion region from
forming.?’ Under reverse bias, the voltage drop is only a few
mV, leading to negligible electric fields.? This result, con-
firmed by Hodes, Howell, and Peter,’! helped to overturn the
conventional wisdom concerning the origin of the photovolt-
age, which had traditionally been thought to be due to a
space-charge layer. One explanation® invokes a built-in po-
tential difference at the back contact of the semiconductor
with the conducting glass. A different explanation involves
changes in the Fermi level due to electron injection.’*3* Both
types of mechanisms might play a role.?”

One important and interesting fact that will contribute to-
ward derivation and subsequent interpretation of the current-
voltage characteristics concerns how the experimentally
measured recombination current density almost vanishes at
short circuit>*—indicating that the only significant recombi-
nation pathway proceeds via back electron transfer into the
electrolyte. Indeed, charge recombination between redox
species (I3 ions) in the electrolyte and conduction-band elec-
trons localized at the nanoporous interface result in subopti-
mal photovoltage levels—thus limiting the conversion
efficiency.’

B. Photocurrent-voltage characteristics

We begin by assuming that the number of electrons in-
jected into the conduction band depends only on the incident
radiant power—in fact the known very high quantum yields
justify this assumption. This assumption allows us to express
the recombination current density J, as a function of the pho-
tocurrent density J and the injection current density. Since J,
almost vanishes at short circuit, the injection current equals
the short circuit current J,. so that

Jr=Jsc_J' (1)

For a well-mixed solution with identical surface and bulk
concentrations (typical for small current densities), the
Butler-Volmer equation®® leads to the following expression
for the recombination current density J,:
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—Jy=Jo[exp(= acufn) - exp(a,ufn)], (2)

where J,, denotes the exchange current density, u is the num-
ber of electrons transferred in the reaction (and consequently,
the order of the rate of reaction for recombination for elec-
trons), a4 and o are the anodic and cathodic transfer coef-
ficients, 7=V is the overpotential, and f=¢q/kpT.

With some simplification,”® the widely used’’ Butler-
Volmer equation for the recombination current density J, be-
comes

J. = gkocng Texp(uagVikgT) — 1], (3)

where a=ay,, u is the number of electrons transferred in the
reaction (and consequently, the order of the rate of reaction
for recombination for electrons), k. is the back electron
transfer rate constant, ¢ is the concentration of the oxidized
species, m is the order of the reaction for the oxidized spe-
cies, g the electronic charge, and n the value in dark condi-
tions of the electron population in the semiconductor. Al-
though one may expect the Butler-Volmer equation itself to
fail at the very small scales of the nanopores, yet this last
equation correctly describes experimental results.”> Recall
that the actual surface area of the nanocrystalline semicon-
ductor in fact greatly exceeds the nominal area of the device
by several orders of magnitude (due to the nanoporous struc-
ture). Hence, the injection and recombination currents per
unit area of the semiconductor-electrolyte interface at nano-
scopic scales always remain much smaller than Ji and J,,
respectively.

The Nernst equation for the potential in terms of the con-
centrations of the oxidized and reduced species holds valid
only under equilibrium conditions, yet we know that ¢ varies
across the electrolyte. Indeed, since the reduced species
greatly exceeds the oxidized species, we can safely conclude
that the voltage varies as AV(x)=—(kzT/q)In[c’/c(x)],
where c(x) denotes the concentration at a position x across
the cell (i.e., electrolyte) and ¢’ denotes a reference (or
mean) concentration. Nonetheless, we still do not know, a
priori, exactly how it varies with the potential at the
semiconductor-electrolyte interface as the external load (i.e.,
external impedance) varies due to the out of equilibrium con-
ditions. In this context, one important clue comes from the
dependence of the photovoltage on the electron population n.
In the semiconductor, injected electrons shift the Fermi level
so that n=n exp(qV/kgT). This exponential dependence on
potential, together with the exponential dependence of ¢ on
voltage across the electrolyte, hints at a similar (i.e., expo-
nential) dependence of ¢ on V as the external load varies.

An exponential dependence of ¢ on V would allow us to
assume, without loss of generality, the following constitutive
equation:

ﬁ:exp{— q(V_Voc):|. (4)

c vkpT

Here ¢, represents the concentration under open circuit con-
ditions and vy represents a free parameter in the model such
that y~! gives the fraction of the voltage variation that affects
the oxidized species concentration. Since the tri-iodide con-
centration cannot vary very much in the liquid, we cannot
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expect small 7y close to equal unity since this would imply
cxn. For now we merely mention that one might naively
expect y>0 since electron injection and dye regeneration
(associated with larger V) produce oxidized species. In fact,
we will show below that y<<0 and that it bears a relation to
the fill factor.

This constitutive equation, Eq. (4), for the electrolyte is
consistent with the assumptions of the Butler-Volmer (and
Nernst) equations, both of which have their ultimate basis in
Boltzmann-Gibbs statistics. Indeed, describing quantitatively
the injection and charge separation processes inside the semi-
conductor requires the use of Fermi-Dirac statistics; however
Boltzmann-Gibbs statistics approximates very well the be-
havior of the electrolyte. But without a constitutive equation,
the fill factor remains underdetermined. In this context, the
free parameter y in Eq. (4) will be shown to determine the
fill factor by quantifying how the oxidized species concen-
tration varies with the electron population. Notice that the fill
factor itself depends on many specific (i.e., nonuniversal)
properties of the semiconductor-electrolyte interface, such as
composition, morphology, crystallinity, porosity, conductiv-
ity, surface properties, and electrolytic conductivity and vis-
cosity. Most if not all of these factors can change the fill
factor only by their effects on the recombination current-
voltage curve. So we can expect all these factors to affect v,
such that the value of y will vary from cell to cell, but the
crucial point is that we do not expect significant departures
from Boltzmann-Gibbs and Fermi-Dirac statistics. Our re-
sults reported below clearly demonstrate that the above con-
stitutive equation represents a good first approximation. We
find remarkably good agreement with experimental data. The
constitutive equation effectively introduces into the model a
nonunique characteristic scale of energy that affects the oxi-
dized species, determined by vkgT (see below).

Moreover, we wish to make clear to the reader not only
which physical processes the model takes into account, but
also which processes it neglects. We limit our investigations
to the charge-exchange processes at the semiconductor-
electrolyte interface. Specifically, we do not explicitly take
into consideration other parameters of the cell, such as the
series resistance of the conducting glass substrate and the
platinized counter electrode and the charge-exchange mecha-
nism at the counter electrode. Clearly, such effects alter the
photocurrent-voltage curves and may represent nonuniversal
aspects of the problem. Nevertheless, we note the following
three points: (i) the series resistances make themselves felt
strongly only at relatively larger values of the current, i.e.,
for relatively lower operating voltages; (ii) the effect of an
additional series resistance mainly is to lower the short cir-
cuit current and to “flatten” the entire curve; (iii) these ef-
fects lead to a change in the functional form of the curves,
however other preliminary results (not shown here) indicate
that the basic shape of the curve remains approximately un-
changed.

III. RESULTS

The previous equations immediately lead to an analytical
expression for the photocurrent J as a function of the voltage
V across the cell
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FIG. 1. (Color online) Typical current-voltage characteristics
under radiant power of 1.5 a.m., taken from Huang er al. (Ref. 23).
The four data sets have different characteristics due to varied
chemical treatments (see text), yet the theoretical curves (solid
lines) corresponding to Eq. (6) can account well for the experimen-
tal curves. Inset shows approximate logarithmic relation for the
recombination current density J, versus voltage, consistent with Eq.

(3).

<mLI(V_ Voc)
exp\ —

vkpT ) uaqV
exp -1
uaqVy, kgT
expl ——— | -1

kT

J=J 1~

(5)

Here m=2 because of the second-order reaction and u«
~(.7 according to experimental results.”>?® We expect this
analytical expression to apply to all dye-sensitized solar
cells.

We can further simplify Eq. (5) for the photocurrent-
voltage relation by making additional realistic assumptions.
Equation (3) for the recombination has validity in the large
voltage (V>80 mV) regime.?>?® Below this potential, the
recombination current becomes negligible and uninteresting.
For any useful cell, n>n, by many orders of magnitude in
this regime. So we can approximate Eq. (5) with

exp(V,./Vy) — exp(VIV)

J=J s 6
5 exp(V,/Vy) — 1 ©)

where the potential
V.= (kgT/q) Volts, (7)

ua+mly 40(0.7 + 2/y)

represents a characteristic scale of the exponential decay.
Specifically, V quantifies the photovoltage drop correspond-
ing to a decrease in recombination current density by a factor
of 1/e, where e here denotes Euler’s number. Equations (5)
and (6) represent the first of three results of this article. Note
that for fixed V. and J,., there is a single free parameter,
viz., V (or, equivalently, y), which quantifies properties of
more fundamental physical mechanisms of transport in the
liquid.

We next compare theory and experiment. Figure 1 com-
pares the model with previously reported photocurrent-
voltage curves?® of untreated and pyridine derivative-treated
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FIG. 2. (Color online) Renormalized photocurrent J® versus
VIV, for the curves shown in Fig. 1. The data collapse onto a
single universal function stable over a variety of chemical treat-
ments. We have chosen the plotting parameter v =1/40, based on
the value of kzT at room temperature, for illustration (correspond-
ing to our estimate of an upper bound for fill factors). However,
data collapse for arbitrary v,. Indeed, we can linearize the curves
(inset, see text). The dashed line traces the upper and lower uncer-
tainties corresponding to an error of 1% in the short circuit current.
Notice how remarkably the data collapse onto a straight line (within
1% tolerance).

[RuL,(NCL),]-coated nanocrystalline TiO, electrodes in
CH;CN/MNO (50:50 wt %) containing Li(0.3M) and I, (30
mM), for a radiant power of 100 mW/cm? (AM 1.5). The
electrodes had treatment with following substances:
3-vinylpyridine (VP), 4-tert-butylpyridine (TBP), and
poly(2-vinylpyridine) (PVP). The good agreement with the
data validates the model represented by Egs. (5) and (6).
Estimated values of V,: 0.0575 (untreated), 0.0615 (VP),
0.0651 (TBP), and 0.0682 V (PVP). Notice that V, changes
the fill factor (via y). A value V,—oo (corresponding to
purely resistive or ohmic behavior’®) leads to FF=1/4,
whereas V,— 0 leads to unity fill facto—perfect but theo-
retically impossible except at 7=0 K. Most dye-sensitized
solar cells have FF=0.6-0.7 (Fig. 1).

We now turn our attention to the question of whether a
single universal current-voltage relation can describe all
TiO, solar cells. According to the theory presented above, all
dye-sensitized solar cells must satisfy Eq. (5) if not Eq. (6).
If we renormalize the photovoltage to obtain an adimen-
sional measure V*=V/V,, then every single dye-sensitized
solar cell must satisfy the following relation for an idealized
renormalized photocurrent:

J(R) = 1- [1 - (J/Jsc)(l - eXP(— VOC/VS))]VS/VOCUS (8)
1 —exp(=1/vy) ’

Here the plotting parameter v, fixes the shape or fill factor of
the renormalized photocurrent. Figure 2 shows the predicted
data collapse. We have chosen a value v,=1/40 due to its
significance for an idealized solar cell with maximum FF
(see below) at room temperature. However, we can obtain
data collapse for any v, (not shown). Note that v is not a
parameter of the model. This is perhaps more clear if we
linearize the curves. We define adimensional coordinates

X'=1-VIV,,

035308-4



UNIVERSAL ASPECTS OF PHOTOCURRENT-VOLTAGE...

1.0

N~ .

T T
vom{ Yo_cio

0.8 VOP#VOC=0"5,5‘ S

l v 1.0

0.6
0.4

0.2+

0.0

Voo Vs

FIG. 3. (Color online) Theoretically predicted fill factors FF and
ratio Vopr/ Ve of optimal operating voltage Vopr to open circuit
voltage V. versus V,./V,, where V represents a characteristic volt-
age [see Eq. (7)]. We estimate a worst-case lower bound on the fill
factor using V,./V =1, and an idealized upper bound using
Voo!/ Vi=40. Inset shows more complete picture (including negative,
unphysical V,./V;) of the numerical solution of the relevant tran-
scendental equation.

Y'=-VyV, ln{l - Ji[l —exp(- VOC/VS)]}. 9)
sC

Note how the data collapse (inset), within remarkably small

tolerances.

We next consider the problem from the point of view of
scale-invariance symmetry. The fill factor cannot depend on
J. since it cancels in the power ratio. It also remains invari-
ant under a scale transformation V,,— AV, and V,— AV In
fact, no dilation can alter a ratio of geometric areas. The
invariance of FF for arbitrary A implies that FF can depend
on V. and V only via their ratio: FF=FF(V,./ V). The exact
functional dependence appears to involve a transcendental
equation. Figure 3 shows numerically solved FF as a func-
tion of V,./ V..

IV. DISCUSSION AND CONCLUSION

We comment on the values typically found for V and
their physical significance. They correspond to y=-6<0.
The finding of negative vy suggests that the concentration of
redox species (I3 ions) decreases with the photovoltage. This
may at first seem counterintuitive. Indeed, higher voltage
suggests larger electron population and more injection.
Moreover, the regeneration of the dye creates I3 species, in
the proportion of one ion for every two electrons injected. So
do we face an apparent inconsistency? In fact, very small
recombination current J,=~(0 under short circuit conditions
hints at the correct explanation: the rate of regeneration of
the oxidized dye depends not on the photovoltage (almost
zero under short circuit) but rather on the rate of electron
injection—thus on radiant power. We also know that ¢
~n'7 s0 ¢ scales with n with a fractional power-law scaling
exponent (1/y=-1/6). The fractional power-law behavior
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might indicate a relevant role for reaction-diffusion pro-
cesses involving anomalous transport and diffusion. We have
already mentioned earlier the inadequacy of the unmodified
Butler-Volmer equation at nanoscopic scales. Although such
issues lie beyond the present scope, we wish to stress that a
negative value of 7y should not surprise the reader. Indeed,
negative values of vy agree with the expectation of a smaller
depletion layer for larger external current drain. Crucially,
larger electron population n leads to greater recombination,
which consumes the oxidized species and lowers c. Such an
inverse relation between n and ¢ requires y<<O.

We next comment on the usefulness of the proposed
model, noting that it is linearizable via Eq. (9). Our findings
yield predictions and in fact allow us to estimate lower and
upper limits for FE. Ohmic behavior corresponds to V,—
and FF=1/4; however such a low value would render a de-
vice practically useless. For any useful device, the largest
conceivable value of V, should not exceed V., which gives
us a lower bound for FF of FF=0.31 and an optimal opera-
tional voltage of Vopr=0.55 V.. By considering V,/V,.
=1/40 and idealizing ua=1 (i.e., no variation in ¢ with ex-
ternal load), we arrive at a theoretical upper bound of FF
=0.88 and Vpr=0.91 V., as shown in Fig. 3. For ua=0.7
and y—o we obtain slightly smaller FF. Overall, we find
excellent agreement with experimental values.

Finally, our findings can explain the physical origin of the
large fill factors of dye solar cells. The recombination current
becomes insignificant as soon as the voltage drops to V
=V..—V, [Egs. (3) and (6)]. Since V<V, therefore the
photocurrent jumps from zero to close to its short circuit
value even if the voltage only drops slightly (i.e., by V).
Notice from Fig. 3 that increases in V —e.g., due to greater
radiant power—should indeed lead to higher FF if V varies
much less than V. as in fact occurs. Further analysis of
more recent experimental data (not shown here) agrees with
the results reported here, although the agreement becomes
less good for extremely inefficient cells (as expected).

In summary, our theoretical results (Fig. 3) allow the es-
timation of FF from V ./V; or vice versa. Moreover, from
just three data points, one can reconstruct the entire current-
voltage curve via Eq. (6). For known open circuit voltage
and short circuit current density, the proposed linearizable
model has a single free parameter, corresponding to FF.
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